371

Complexes of 1,8-Naphthyridines. X. Complexes of 1,8-Naphthyridine with Rare Earth Nitrates<sup>1a</sup>

## Russell J. Foster<sup>1b</sup> and David G. Hendricker

Received October 26, 1971

Rare earth nitrate complexes of the type  $M(napy)_3$  $(NO_3)_3$  where M = La-Nd and napy is 1,8-naphthyridine, and  $M(napy)_2(NO_3)_3$  where M = Y, Sm-Yb have been synthesized. The compounds have been characterized by elemental analyses, molar conductances, magnetic moments, and infrared (4000-200 cm<sup>-1</sup>) spectra. The molar conductance and infrared spectral data show that all nitrate groups are coordinated. Both nitrate and napy are known to produce complexes which exhibit high coordination numbers, and there is crystallographic evidence of twelve-coordination in  $Ce(NO_3)_6^{3-}$ . Therefore, the  $M(napy)_3$  $(NO_3)_3$  complexes appear to be twelve-coordinate, and the  $M(napy)_2(NO_3)_3$  complexes are apparently ten-coordinate.

### Introduction

The coordination chemistry of the rare earths has been developed only recently.<sup>24</sup> In the past decade numerous lanthanide complexes of the nitrogen-donor ligands phenanthroline and bipyridyl have been successfully isolated using non-aqueous solvents and anhydrous lanthanide salts as starting materials.<sup>5-12</sup> These chelating ligands produce five-membered rings when coordinated to a metals, whereas 1,8-napthyridine forms a four-membered ring in its complexes.



(1a) Presented in part at the 162nd National Meeting of the Amer-ican Chemical Society, Washington, D. C., September 17, 1971, Ab-stract No. INOR 215.

stract No. INOR 215.
(1b) NDEA Fellow.
(2) S. P. Sinha, « Complexes of the Rare Earths », Pergamon Press, New York, N. Y., 1966, pp. 1-16.
(3) T. Moeller, E. R. Birnbaum, J. H. Forsberg, and R. B. Gayhart, «Progress in the Science and Technology of the Rare Earths», Vol. 3, L. Eyring, Ed., Pergamon Press, New York, N. Y., 1968, pp. 61-128.
(4) T. Moeller, D. F. Martin, L. C. Thompson, R. Ferrus, G. R. Feistel, and W. J. Randall, Chem. Rev., 65, 1 (1965).
(5) F. A. Hart and F. P. Laming, Proc. Chem. Soc., London, 107 (1963).

(5) F. A. Fait and V. A. Smirnova, Zh. Neorg. Khim., 8, 2206 (1963).
(7) N. I. Lobanov and V. A. Smirnova, *ibid.*, 8, 2208 (1963).
(8) S. P. Sinha, Spectrochim. Acta, 20, 879 (1964).
(9) F. A. Hart and F. P. Laming, J. Inorg. Nucl. Chem., 26, 579 (1964).

(10) F. A. Hart and F. P. Laming, *ibid.*, 27, 1605 (1965). (11) F. A. Hart and F. P. Laming, *ibid.*, 27, 1825 (1965).

Considering the large size of the tripositive lanthanide ions relative to the first row transition metal ions, higher coordination numbers for the lanthanides are expected. Crystallographic studies have shown several lanthanide nitrate species to be tencoordinate.<sup>13-16</sup> We have previously reported the syntheses of ten-coordinate complexes M(2,7-dmnapy)2- $(NO_3)_3$  where M = Y. La-Yb, and 2,7-dmnapy is 2,7dimethyl-1,8-naphthyridine.17

However, a coordination number greater than ten for the lanthanide ions is considerably less common. Two twelve-coordinate species which contain six bidentate nitrate groups have been verified by crys-tallography.<sup>18,19</sup> The ability of the nitrate group to attain unusually high coordination numbers with first row transition metals is well known.<sup>20,21</sup> Likewise, napy has also exhibited the ability to form eightcoordinate first row transition metal complexes.225

As a continuation of our studies of the coordination chemistry of naphthyridines with the tripositive rare earth ions, and in view of the fact that both nitrate and napy tend to give high coordination numbers in their complexes, we have synthesized rare earth nitrate complexes of napy in an effort to achieve complexes wherein the coordination number is greater than ten.

#### Experimental

Materials. Lanthanum nitrate hexahydrate was purchased from Fisher Scientific Co. and used without further purification. Rare earth oxides (99.9%

(12) K. K. Robatgi and S. K. Sen Gupta, *ibid.*, 32, 2247 (1970).
(13) A. R. Al-Karaghouli and J. S. Wood, J. Amer. Chem. Soc., 6458 (1968).
(14) D. S. Moss and S. P. Sinha, Z. Phys. Chem. (Frankfurt), 63, (1959).
(15) A. R. Alkaraghouli and J. S. Wood, Chem. Commum., 135, 170. 90. 190 (1970). (16) M. Ul-Haque, F. A. Hart, and C. N. Caughlan, *ibid.*, 1240 (1970). (17) D. G. Hendricker and R. J. Foster, J. Inorg. Nucl. Chem., (17) D. G. Hendricker and R. J. Foster, J. Inorg. Vucl. Cnem., in press.
(18) A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Chem. Phys., 39, 2881 (1963).
(19) T. A. Beinekc and J. Delgaudio, Inorg. Chem., 7, 715 (1968).
(20) J. G. Bergman and F. A. Cotton, *ibid.*, 5, 1208 (1966).
(21) J. Drummond and J. S. Wood, J. Chem. Soc. (A), 226 (1970).
(22) D. G. Hendricker and R. L. Bodner, Inorg. Nucl. Chem. Letters 6, 187 (1970).

(22) D. G. Heindricker and R. L. Bodner, *Horg. Nucl. Chem. Electers*, 6, 187 (1970).
 (23) R. L. Bodner and D. G. Hendricker, *ibid.*, 6, 421 (1970).
 (24) A. Clearfield, P. Singh, and I. Bernal, *Chem. Commun.*, 389

(1970).

(25) P. Singh, A. Clearfield, and I. Bernai, J. Coord. Chem., I, 29 (1971).

Foster, Hendricker | Complexes of 1,8-Naphthyridine with Rare Earth Nitrates

| 7 | 7 | 2 |
|---|---|---|
| Э | 1 | 2 |

Table I. Analytical Data and Physical Properties for M(napy)<sub>a</sub>(NO<sub>3</sub>)<sub>3</sub>.

| •           |       |    |       | Hill           |      |           | Conduc              | ctivity <sup>a</sup>      |
|-------------|-------|----|-------|----------------|------|-----------|---------------------|---------------------------|
| Com<br>M, r | pound |    | %C    | Analysis<br>%N | %H   | Color     | A(molar<br>cm²-mho) | Concn.<br>$M \times 10^3$ |
| Ϋ,          | 2     | c. | 35.90 | 18.32          | 2.26 | white     | 24                  | 0.66                      |
|             |       | f. | 35.78 | 18.04          | 2.09 | white     | 27                  | 0.00                      |
| La,         | 3     | с. | 40.29 | 17.62          | 2.54 | white     | 11                  | 0.89                      |
|             |       | f. | 40.22 | 17.36          | 2.58 | white     |                     | 0.05                      |
| Ce,         | 3     | c. | 40.22 | 17.60          | 2.54 | vellow    | 13                  | 0.75                      |
|             |       | f. | 40.45 | 17.37          | 2.58 | yenow     | 15                  | 0.15                      |
| Pr,         | 3     | c. | 40.18 | 17.58          | 2.53 | lt green  | 14                  | 0.56                      |
|             |       | f. | 40.42 | 17.33          | 2.54 | it. Broon | 14                  | 0.50                      |
| Nd,         | 3     | c. | 39.99 | 17.49          | 2.52 | lt violet | 16                  | 0.63                      |
|             |       | f. | 40.09 | 17.24          | 2.41 |           | 10                  | 0.05                      |
| Sm,         | 2     | c. | 32.20 | 16.44          | 1.85 | white     | 15                  | 0.46                      |
|             |       | f. | 32.26 | 16.26          | 1.88 | winte     | 13                  | 0.10                      |
| Eu,         | 2     | с. | 32.12 | 16.39          | 2.03 | white     | 14                  | 0.76                      |
|             |       | f. | 32.06 | 16.10          | 1.91 | white     | 14                  | 0.70                      |
| Gd,         | 2     | c. | 31.84 | 16.25          | 2.01 | white     | 13                  | 0.89                      |
|             |       | f. | 31.60 | 16.04          | 2.11 | white     | 15                  | 0.05                      |
| ть.         | 2     | c. | 31.75 | 16.20          | 2.00 | white     | 15                  | 0.67                      |
| _           |       | f. | 31.69 | 15.99          | 1.97 | white     |                     | 0.07                      |
| Dy,         | 2     | с. | 31.56 | 16.11          | 1.99 | white     | 19                  | 0.81                      |
|             |       | f. | 31.38 | 16.02          | 1.92 | winte     |                     | 0.01                      |
| Ho,         | 2     | с. | 31.44 | 16.04          | 1.98 | it orange | 14                  | 0.69                      |
| _           | _     | f. | 31.38 | 15.93          | 1.90 | n: orange | 14                  | 0.05                      |
| Er,         | 2     | c. | 31.32 | 15.98          | 1.98 | nink      | 19                  | 0.95                      |
| -           |       | f. | 31.14 | 15.65          | 1.95 | Philk     |                     | 0.00                      |
| Τm,         | 2     | c. | 31.23 | 15.94          | 1.97 | white     | 23                  | 0.90                      |
|             |       | f. | 31.02 | 15.65          | 1.95 |           | ~3                  | 2100                      |
| Yb,         | 2     | c. | 31.02 | 15.83          | 1.96 | white     | 25                  | 0.72                      |
|             |       | f. | 30.98 | 15.68          | 1.86 |           |                     |                           |

<sup>a</sup> Values obtained in nitromethane solutions at 25°. The conductivity of the 1:1 electrolyte  $[(CH_3(CH_2)_3)_4N]NO_3$  in nitromethane at 25° is 90.

pure) were purchased from Molycorp, Louviers, Colorado. Triethyl orthorformate and spectral grade nitromethane were obtained from Eastman Chemical Co. Commercially available ethyl acetate and absolute ethanol, stored over molecular sieves, were used in the preparation of the complexes. Purity of 1,8naphthyridine, prepared by the method of Paudler and Kress,<sup>26</sup> was verified by pmr spectroscopy.

Instrumentation. The infrared spectra (4000-200 cm<sup>-1</sup>) were obtained with a Perkin-Elmer Model 621 double-beam grating spectrophotometer on Nujol-Fluorolube mulls supported between sodium chloride or polyethylene windows. All spectra were calibrated with polystyrene film. An Industrial Instruments Model RC-16B2 conductance bridge was used to determine the conductivity of nitromethane solutions of the complexes. The Sargent Model S-29885 cell was calibrated with a standard KCl solution prepared with conductance water. Magnetic moments were obtained at 24.7° using the Faraday apparatus described by DuBois and Meek.<sup>27</sup> Diamagnetic corrections for the metal and nitrate ions were obtained from Selwood.<sup>28</sup> A value of  $-86.8 \times 10^{-6}$  cgsu was measured for napy. Carbon, hydrogen and nitrogen analyses were ascertained by combustion.

Preparations. Hydrated rare earth nitrates were prepared by dissolving the corresponding oxides in concentrated nitric acid and evaporating the solution to dryness. The requisite amount of hydrated rare earth nitrate (0.3 mmol) was dissolved in 20 ml of hot ethyl acetate and dehydrated by adding 5 ml of triethyl orthoformate and refluxing with stirring for 12 hr. To this solution was added napy (1.8 mmol) which had been dissolved in 10 ml of hot ethyl acetate. The complexes precipitated gradually over a period of a few hours. Prior to isolating the complexes by filtration, the solution was refluxed with stirring for two days. The product was recrystallized from a 3:1 ethyl acetate-absolute ethanol solution, washed with 60 ml of anhydrous ethyl ether under helium flush, and dried *in vacuo* for one week.

## **Results and Discussion**

The analytical and conductance data for the newly synthesized complexes listed in Table I indicate that three molecules of ligand are associated with La-Nd, and two molecules of ligand are associated with the smaller Y, Sm-Yb, and in addition that all three nitrate groups are also coordinated to the metals. The tris-napy complexes exhibit a slight increase in conductivity with decreasing size of the cation, and the bis-napy complexes also show the same general trend. This is expected since steric crowding should cause a higher degree of dissociation with the smaller ions. Notably, the conductivities of the tris complexes are equal to or even less than the bis complexes. This may indicate that the larger rare earth ions can accommodate three napys and three nitrate groups as easily as the smaller ions can accomodate two napys

<sup>(26)</sup> W. W. Paudler and T. J. Kress, J. Org. Chem., 32, 832 (1967).
(27) T. D. DuBois and D. W. Meek, Inorg. Chem., 6, 139 (1967).
(28) P. W. Selwood, «Magnetochemistry», 2nd Ed., Interscience Publishers, Inc., New York, N. Y., 1956, p. 78.

| Table | 11. | Magnetic | Data | for | $M(napy)_n(NO_3)_3$ | at | 24. <b>7°</b> . |
|-------|-----|----------|------|-----|---------------------|----|-----------------|
|-------|-----|----------|------|-----|---------------------|----|-----------------|

| Compound<br>M, n = | χ. 10 <sup>6</sup><br>cgsu | χ <sub>m</sub> . 10 <sup>3</sup><br>cgsu | χ' <sub>m</sub> · 10 <sup>3</sup> a<br>cgsu | Experimental<br>µ <sub>eff</sub> (BM) | Theoretical <sup>b</sup><br>µ <sub>eff</sub> (BM) |
|--------------------|----------------------------|------------------------------------------|---------------------------------------------|---------------------------------------|---------------------------------------------------|
| Y, 2               | Diamagnetic                |                                          |                                             |                                       |                                                   |
| La, 3              | Diamagnetic                |                                          |                                             |                                       |                                                   |
| Ce, 3              | 3.02                       | 2.16                                     | 2.50                                        | 2.44                                  | 2.56                                              |
| Pr, 3              | 6.12                       | 4.39                                     | 4.73                                        | 3.37                                  | 3.62                                              |
| Nd, 3              | 6.25                       | 4.50                                     | 4.85                                        | 3.40                                  | 3.68                                              |
| Sm, 2              | 1.73                       | 1.04                                     | 1.29                                        | 1.75                                  | 1.55-1.65                                         |
| Eu. 2              | 7.93                       | 4.78                                     | 5.00                                        | 3.45                                  | 3.40-3.51                                         |
| Gd, 2              | 47.0                       | 28.4                                     | 28.6                                        | 8.2                                   | 7.94                                              |
| Tb 2               | 71.3                       | 43.2                                     | 43.4                                        | 10.2                                  | 9.7                                               |
| Dy, 2              | 81.8                       | 49.8                                     | 50.1                                        | 10.9                                  | 10.6                                              |
| Ho, 2              | 84.1                       | 51.4                                     | 51.7                                        | 11.1                                  | 10.6                                              |
| Er. 2              | 62.4                       | 38.3                                     | 38.5                                        | 9.6                                   | 9.6                                               |
| Tm. 2              | 39.5                       | 24.3                                     | 24.6                                        | 7.6                                   | 7.6                                               |
| Yb, 2              | 13.16                      | 8.15                                     | 8.41                                        | 4.47                                  | 4.5                                               |

 $a \chi_m$  corrected for diamagnetic contribution of metal, nitrate and napy. b Values are the theoretical  $\mu_{rff}(BM)$  for Ln<sup>3+</sup> ions. L.N. Mulay, « Magnetic Susceptibility », Interscience Publishers, Inc., New York, N.Y., 1963, p. 1776.

Table III. Vibrational Modes For Bidentate C<sub>2v</sub> NO<sub>3</sub> in M(napy)<sub>n</sub>(NO<sub>3</sub>)<sub>3</sub>.

| Comj<br>M, n | pound<br>= | $\nu_i(\mathbf{A}_i)$   | ν <sub>4</sub> (B <sub>2</sub> ) | $v_2(\mathbf{A}_1)$ | ν <sub>3</sub> ( <b>B</b> <sub>1</sub> ) | ν <sub>5</sub> (A <sub>1</sub> ) | $\nu_{6}(B_{2})$ | V1-V4 |
|--------------|------------|-------------------------|----------------------------------|---------------------|------------------------------------------|----------------------------------|------------------|-------|
| La,          | 3 ·        | 1454vs, br <sup>a</sup> | 1316vs                           | 1039vs              | 821s                                     | 738s                             | 706w             | 138   |
| Ce,          | 3          | 1454vs, br              | 1 <b>316</b> vs                  | 1037 vs             | 819s                                     | 736s                             | 706vw            | 138   |
| Pr,          | 3          | 1453vs, br              | 1316vs                           | 1037vs              | 819s                                     | 737s                             | 706vw            | 137   |
| Nd,          | 3          | 1453vs, br              | 1314vs                           | 1040vs              | 819s                                     | 740vs                            | 707vw            | 139   |
| Sm,          | 2          | 1469vs, br              | 1296vs                           | 1027vs              | 813s                                     | 745s, 737vs                      | 705w             | 173   |
| Eu,          | 2          | 1 <b>468vs, br</b>      | 1315vs                           | 1022vs              | 818s                                     | 746s, 740vs                      | 705w             | 153   |
| Gd,          | 2          | 1470vs, br              | 1317vs                           | 1022vs              | 816s                                     | 746s. 739vs                      | 705w             | 153   |
| Тb,          | 2          | 1470vs, br              | 1319vs                           | 1022vs              | 816s                                     | 747s, 742vs                      | 704m             | 151   |
| Dy,          | 2          | 1470vs, br              | 1 <b>317v</b> s                  | 1026vs              | 818s                                     | 748s, 744vs                      | 707w             | 153   |
| Ho,          | 2          | 1469vs, br              | 1317vs                           | 1026vs              | 817s                                     | 748s, 744vs                      | 707w             | 152   |
| Er,          | 2          | 1470vs, br              | 1322vs                           | 1025vs              | 816s                                     | 752s, 747vs                      | 705m             | 148   |
| Tm,          | 2          | 1469vs, br              | 1310vs                           | 1025vs              | 814s                                     | 752sh, 747vs                     | 70 <b>5</b> m    | 159   |
| Yb,          | 2          | 1470vs, br              | 1317vs                           | 1 <b>027vs</b>      | 817s                                     | 752s, 747vs                      | 707vw            | 153   |
| Υ,           | 2          | 1470vs, br              | 1317vs                           | 1029vs              | 820s                                     | 751sh, 746vs                     | 708vw            | 153   |

<sup>a</sup> s, strong; m, medium; w, weak; v, very; sh, shoulder; br, broad.

and three nitrates. The compounds are indefinitely stable, but they were stored over CaSO4 in vacuo as a precaution against any possible adsorption of water.

The magnetic moments of the complexes are listed in Table II. They compare favorably with the theoretical values, as is expected for the well-shielded 4f electrons of lanthanide ions. The moments of the napy complexes Ce-Gd and Er-Yb are less than or equal to the moments of the 2,7-dmnapy complexes, but the Tb-Ho moments are higher in the napy complexes.<sup>17</sup> Except for Tb-Ho, the magnetic moments of the napy series correspond quite closely to the values for the similar Ln(phen)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub> complexes.<sup>10</sup>

The infrared (4000-200 cm<sup>-1</sup>) spectra of the complexes were recorded and analyzed to detect the possible presence of coordinated or lattice water, and to determine whether the nitrate groups are coordinated or ionic in nature. No bands which could be attributed to water were found in any of the spectra, cstablishing that the complexes are anhydrous.

Nitrate assignments based on the symmetry group  $C_{2v}$  for bidentate coordinated nitrate<sup>29,30</sup> are reported in Table III. Infrared spectra can aid in establishing if a nitrate group is ionic or coordinated in nature. When a nitrate group is coordinated in either a mono - or bidentate manner, the symmetry of the free nitrate group is reduced from  $D_{3h}$  to  $C_{2v}$ . Therefore, the number of vibrational modes observed in the infrared spectra alone is not sufficient to distinguish between the two forms of coordinated nitrate. Raman data, which we lack the facility to obtain, in conjunction with infrared data would provide an unequivocal assignment. However, the magnitude of separation of certain infrared active modes of nitrate appears to provide a reasonable basis for distinguishing between mono- and bidentate coordination.<sup>31-33</sup>

The absorption attributed to  $v_3$  (813-821 cm<sup>-1</sup>),  $v_2$  (1022-1040 cm<sup>-1</sup>) and  $v_4$  (1296-1322 cm<sup>-1</sup>) are all in general agreement with the assignments of numerous authors who have synthesized various oxygenand nitrogen-donor complexes of lanthanide nitrates, including those which contain phenanthroline, bipyr-

<sup>(29)</sup> K. Nakamoto, «Infrared Spectra of Inorganic and Coordination Compounds», John Wiley and Sons, Inc., New York, N. Y., 1963, p. 93.

C. C. Addison and W. B. Simpson, J. Chem. Soc., 598 (1965).
 N. F. Curtis and Y. M. Curtis, Inorg. Chem., 4, 804 (1965).

<sup>(32)</sup> A. B. P. Lever, E. Mantovani, and B. S. Ramaswamy, Can.
J. Chem., 49, 1957 (1971).
(33) J. R. Ferraro, J. Inorg. Nucl. Chem., 10, 319 (1959).
(34) J. R. Ferraro, C. Cristallini, and I. Fox, *ibid.*, 29, 139 (1967).
(35) D. A. Durham and F. A. Hart, *ibid.*, 31, 145 (1969).
(36) G. E. Parris and G. G. Long, *ibid.*, 31, 145 (1969).
(37) G. Vicentini and R. Najjar, Inorg. Nucl. Chem. Letters, 6, 571 (1970).

| Compound |   | V2+  | - V5    | $v_2 +$ | Sepa    | Separation |       |
|----------|---|------|---------|---------|---------|------------|-------|
| M, n     | = | øbs. | calc. a | obs.    | calc. a | obs.       | calc. |
| La,      | 3 | 1769 | 1777    | 1739    | 1745    | 30         | 32    |
| Ce,      | 3 | 1771 | 1773    | 1740    | 1743    | 31         | 30    |
| Pr,      | 3 | 1771 | 1774    | 1740    | 1743    | 31         | 31    |
| Nd,      | 3 | 1774 | 1780    | 1741    | 1747    | 33         | 33    |
| Sm       | 2 | 1764 | 1768    | 1730    | 1732    | 34         | 36    |
| Eu.      | 2 | 1763 | 1765    | 1728    | 1727    | 35         | 38    |
| Gď,      | 2 | 1774 | 1764    | 1736    | 1727    | 38         | 37    |
| Tb,      | 2 | 1770 | 1766    | 1730    | 1726    | 40         | 40    |
| Dy,      | 2 | 1776 | 1772    | 1736    | 1733    | 40         | 39    |
| Ho,      | 2 | 1776 | 1772    | 1735    | 1733    | 41         | 39    |
| Er,      | 2 | 1774 | 1774    | 1733    | 1730    | 41         | 44    |
| Tm,      | 2 | 1774 | 1774    | 1731    | 1730    | 43         | 44    |
| Yb,      | 2 | 1772 | 1776    | 1733    | 1734    | 39         | 42    |
| Y,       | 2 | 1777 | 1777    | 1737    | 1737    | 40         | 40    |

**Table IV.** Combination Bands for  $(M(napy)_n(NO_3)_3)$ .

<sup>a</sup> Calc. values are the sum of appropriate bands listed in Table III. Where a doublet was observed for  $v_5$ , an average value was used.

idyl and 2,7-dmnapy as ligands.<sup>8,10,11,17,34-39</sup> Both  $v_3$ and  $v_4$  can be observed without ligand interference. In the tris-napy complexes, the  $v_2$  absorption has combined with a ligand mode to produce a very intense band. However, the  $v_2$  absorption in the bisnapy complexes and the ligand mode occur as a distinct doublet. The lower frequency band of the doublet is assigned to  $v_2$  nitrate since the sum of this band and the observed  $v_5$  and  $v_6$  nitrate modes which are clear of ligand interferences, more closely corresponds to the observed nitrate combination bands in the 1700-1800  $cm^{-1}$  region.

This 1700-1800 cm<sup>-1</sup> region which is also free from interfering ligand bands in these complexes is viewed by some authors as the key to differentiating between mono- and bidentate nitrate groups.<sup>31,32</sup> Ionic nitrate exhibits one band in the 1700-1800 cm<sup>-1</sup> region due to the combination of the  $A_i$  and E' modes  $(D_{3h} \text{ symmetry})$ . When the nitrate group coordinates, the E' mode is split into two components, A1 and  $B_2$  ( $C_{2v}$  symmetry), which results in two combination bands  $(A_1 + A_1 \text{ and } B_2 + A_1)$ . For the same metal center it is expected that distortion of the 120° O-N-O angles of  $D_{3h}$  nitrate will be greater for bidentate rather than monodentate coordination. Thus the  $A_1$  and  $B_2$  modes arising out of E' and their combination bands should undergo greater separation for bidentate rather than monodentate coordination.

Mixed mono- and bidentate coordination results in a very broad band with more than two peaks in the 1700-1800 cm<sup>-1</sup> region.<sup>32</sup> Although in all cases two distinct bands free of ligand interferences are observed in this region for our complexes, the amount of fine structure is noticeably greater for the bis-than tris-napy complexes. All bis-napy complexes exhibit a doublet v5 band, while no fine structure is observed on the single v5 absorption of the tris-napy complexes. Therefore, the fine structure observed in the combination bands of the bis-napy compounds is due at least in part to the split v5 absorption.

Lever, et. al.32 have concluded that the combina-

(38) J. H. Forsberg and C. A. Wathen, Inorg. Chem., 10, 1379 (1971).
(39) W. E. Stewart and T. H. Siddall, III, J. Inorg. Nucl. Chem., 33, 2965 (1971).

tion band separation for the monodentate nitrate group is 5-26 cm<sup>-1</sup>, and is 20-66 cm<sup>-1</sup> for bidentate nitrate. In a series of tri-*n*-butyl phosphate complexes of rare earth nitrates in which all nitrate groups were shown to be bidentate by Raman spectroscopy, the separation range is 29-54  $\text{cm}^{-1}$ .<sup>34</sup> As seen in Table IV, our  $M(napy)_n(NO_3)_3$  complexes show a range of 30-44 cm<sup>-1</sup> indicative of bidentate nitrate groups.

The values for the separation between the two combination modes (Table IV) are essentially the same for the observed and calculated values. Thus the difference in magnitude between the observed and calculated values for each combination mode is ascribed to error in the value reported for  $v_2$ . Some error is expected for  $v_2$  since a ligand mode occurs at the same or similar energy. The agreement between observed and calculated combination values is quite good when compared with data reported for other nitrate complexes.31

Two bands in the range 700-750  $cm^{-1}$ , one at 710-725 cm<sup>-1</sup> ( $\nu_5$ ) and a stronger one at 735-750 cm<sup>-1</sup>  $(v_5)$  have been found in a series of uranyl complexes which are known to contain bidentate nitrate groups.<sup>49</sup> We also observe these modes in the infrared spectra of uor complexes in the regions 704-708 cm<sup>-1</sup> and 736-752  $\text{cm}^{-1}$ . The latter band occurs as a doublet in the bis-napy complexes. The  $v_5$  mode has been observed as a multiplet in numerous other nineand ten-coordinate rare earth complexes<sup>17,37,41</sup> No ligand bands ocur in this region of the spectrum.

The  $v_1$  mode of coordinated nitrate has been observed over a wide range, even as low as  $1430 \text{ cm}^{-1}$ in some ethylenediamine complexes of lanthanide nitrates.42 The position of this band is directly related to the amount of O-N-O angle distortion from D<sub>3h</sub> symmetry experienced by the nitrate group, and thus to the coordination environment around the metal.<sup>41</sup> Steric hindrance caused by the size and/or number of ligands involved in coordination can force the nitrate groups away from the metal, weakening their coordinating ability and lowering the  $v_1$  frequency. Thus

(40) J. I. Bullock, *ibid.*, 29, 2257 (1967).
(41) L. J. Charpentier and T. Moeller, *ibid.*, 32, 3575 (1970).
(42) J. H. Forsberg and T. Moeller, *Inorg. Chem.*, 8, 883 (1969).

due to the steric crowding of the additional ligand molecule, the  $v_1$  absorption of the M(napy)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub> complexes is at a lower frequency than in the M(na $py)_2(NO_3)_3$  complexes The  $v_1$  band is broad in all the compounds due to the occurrance of ligand bands in this region.

The difference between the  $v_1$  and  $v_4$  frequencies, designated as  $\Delta$ , is a measure of the dissymptry arising in the nitrate group.<sup>33</sup> For a covalent nitrate such as CH<sub>3</sub>NO<sub>3</sub>  $\Delta = 385$  cm<sup>-1</sup>, whereas for an ionic nitrate such as NaNO<sub>3</sub>  $\Delta = 0$ . In our M(napy)<sub>3</sub>(NO<sub>3</sub>)<sub>3</sub> complexes  $\Delta$  is 139-137 cm<sup>-1</sup>. The M(napy)<sub>2</sub>(NO<sub>3</sub>)<sub>3</sub> complexes exhibit  $\Delta$  values in the range 173-148 cm<sup>-1</sup> indicating stronger bonded nitrate groups which is again consistent with steric considerations.

The vibrational modes of uncomplexed napy have been assigned.43 Skeletal modes which undergo significant change, indicating ligand coordination, are those at 403, 600, 760, 1026, 1045, 1128 and 1556  $cm^{-1}$ . For all the complexes reported herein these modes are observed at 417  $\pm$  3, 622  $\pm$  4, 781  $\pm$  4, 1035  $\pm$  4, 1054  $\pm$  2, 1135  $\pm$  2, and 1581  $\pm$  5 cm<sup>-1</sup>. The band positions for the Fe(napy)<sub>4</sub>-(ClO<sub>4</sub>)<sub>2</sub> complex wherein napy is unequivocally bidentate are 419, 618, 780, 1032, 1055, 1138 and 1580 cm<sup>-1.44</sup> As in the spectrum of M(2,7-dmnapy)<sub>2</sub>- $(NO_3)_3$ , M = La-Yb, and M(napy)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub>, M = Ca, Sr, Ba,45 no frequencies assignable to vM-O or vM-N were observed for the  $M(napy)_n(NO_3)_3$ , M = La-Ybcomplexes. For  $Y(napy)_2(NO_3)_3$  a band at 228 cm<sup>-1</sup>, similar to the 229 cm<sup>-1</sup>, band for Y(2,7-dmnapy)<sub>2</sub>- $(NO_3)_3^{17}$  was assigned to vM-O. In anhydrous rare earth nitrates vM-O is observed from 270-180 cm<sup>-1.46</sup>

Further evidence that napy is bidentate in these complexes is derived from the pmr spectra (to be completely treated in a separate paper) of the Y, La, and Sm complexes<sup>1a</sup> The 2- and 7- protons yield a sharp resonance pattern typical of equivalent protons, thus suggesting bidentate instead of monodentate coordination. Similar spectra have been observed for the M(CO)<sub>3</sub>napyX, M = Mn, Re and X =

(43) W. L. F. Armarego, G. B. Barlin, and E. Spinner, Spectrochim.
Acta, 22, 117 (1966).
(44) R. L. Bodner, Ph. D. Dissertation, Ohio University, 1970.
(45) R. L. Bodner and D. G. Hendricker, Inorg. Chem., 9, 1255

(1970)

(46) A. Walker and J. R. Ferraro, J. Chem. Phys., 43, 2689 (1965).

Cl, Br, NO<sub>3</sub>, series of complexes wherein napy is bidentate in nature.47

# Conclusions

The crystal structures of the compounds La(bipy)2- $(NO_3)_3^{13}$  and Tb(bipy)<sub>2</sub>  $(NO_3)_3^{14}$  have shown that these species are ten-coordinate with all nitrate groups bound in a bidentate manner. Other lanthanide nitrate species also display ten-coordinate geometry as verified by crystallographic investigations.<sup>15,16</sup> The complexes  $M(2,7\text{-}dmnapy)_2(NO_3)_3$  synthesized in this laboratory also appear to be ten-coordinate.<sup>17</sup> Considering the data presented herein and the physical similarity between the napy compounds and the analogous phen bipy, and 2,7-dmnapy complexes, we believe the bis-napy species to be ten-coordinate.

The nitrate group has been known to produce co-ordinate species such as  $Co(NO_3)_4^{2-,20}$  Mn(NO<sub>3</sub>) $_4^{2-21}$ and  $Zn(NO_3)_4^{2-21}$  which possess the high coordination number of eight. It has also been shown that napy displays this same tendency to yield eight-coordinate species with the first row transition metals as evidenced by the complexes  $M(napy)_4(ClO_4)_2$  where M = Mn, Fe, Co, Ni, Cu and Zn.<sup>22-25</sup> Although coordination numbers higher than ten for the lanthanide ions are uncommon, the crystal structures of the compounds  $Ce_2Mg_3(NO_3)_{12} \cdot 24M_2O^{18}$  and  $(NH_4)_2Ce(NO_3)_6^{19}$  verify that in each compound the cerium atoms are twelvecoordinate, i.e., surrounded by six bidentate nitrate groups. The salts of  $Nd(NO_3)_6^{3-}$  and  $Sm(NO_3)_6^{3-}$  are claimed to exist, and from infrared studies in the 1700-1800 cm<sup>-1</sup> region are assumed to be twelvecoordinate.<sup>32</sup> In light of the data we have accumulated, and considering the ability of both the nitrate group and napy to form complexes of high coordination number, we believe the complexes M(napy)<sub>3</sub>- $(NO_3)_3$  are twelve-coordinate.

Acknowledgment. We gratefully acknowledge the support of this work by the Research Corporation. We also wish to thank Dr. Devon Meek for the use of the Faraday apparatus.

(47) J. R. Wagner, Ph. D. Dissertation, Ohio University, 1972.